Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma
نویسندگان
چکیده
Circular RNAs (circRNAs), a kind of non-coding RNAs, have shown large capabilities in gene regulation. However, the mechanisms underlying circRNAs remain largely unknown so far. Recent studies demonstrated that circRNAs play miRNA sponge effects and regulate gene expression by microRNA response elements. Here, we screened circRNA expression profiles of bladder carcinoma using microarray assay. A total of 469 dysregulated circular transcripts are found in bladder cancer compared with normal tissues, among which 285 were up-regulated and 184 were down-regulated. Six circRNAs were identified to have significant differences by qRT-PCR. We speculated that circRNAs might involve in cancer-related pathways via interactions with miRNA by multiple bioinformatical approaches. Therefore, we further predicted that circTCF25 could sequester miR-103a-3p/miR-107, which potentially lead to the up-regulation of thirteen targets related to cell proliferation, migration and invasion. Subsequently, we demonstrated that over-expression of circTCF25 could down-regulate miR-103a-3p and miR-107, increase CDK6 expression, and promote proliferation and migration in vitro and vivo. This is the first study to exploit circRNA profiling and circRNA/miRNA interactions in bladder cancer. Our work laid the foundation to investigate the functions of circRNAs in cancers. The data also suggest that circTCF25 might be a new promising marker for bladder cancer.
منابع مشابه
MicroRNA-103a-3p controls proliferation and osteogenic differentiation of human adipose tissue-derived stromal cells
The elucidation of the molecular mechanisms underlying the differentiation and proliferation of human adipose tissue-derived stromal cells (hADSCs) represents a critical step in the development of hADSCs-based cellular therapies. To examine the role of the microRNA-103a-3p (miR-103a-3p) in hADSCs functions, miR-103a-3p mimics were transfected into hADSCs in order to overexpress miR-103a-3p. Ost...
متن کاملDownregulation of HMGB1 by miR-103a-3p Promotes Cell Proliferation, Alleviates Apoptosis and Inflammation in a Cell Model of Osteoarthritis
Background: MiR-103a-3p is a small non-coding RNA and has been reported to be involved in osteogenic proliferation and differentiation, but the role of miR-103a-3p in human osteoarthritis (OA) remains unclear. Objectives: In this study, we aimed to explore its function and molecular target in chondrocytes during OA pathogenesis. Materials an...
متن کاملBioinformatics Identification of miRNA-mRNA Regulatory Network Contributing Primary Lung Cancer
Introduction: In clinical practice, distinguishing invasive lung tumors from primary tumors remains a challenge. With recent advances in understanding biological alterations of tumorigenesis and molecular analytic technologies, using these molecular alterations can be sensitive and tumor-specific as biomarker for the stratification of patients. In this study, the molecular network of miRNA-mRNA...
متن کاملWhole blood microRNA expression pattern differentiates patients with rheumatoid arthritis, their seropositive first-degree relatives, and healthy unrelated control subjects
BACKGROUND Epigenetic mechanisms can integrate gene-environment interactions that mediate disease transition from preclinical to clinically overt rheumatoid arthritis (RA). To better understand their role, we evaluated microRNA (miRNA, miR) expression profile in indigenous North American patients with RA who were positive for anticitrullinated protein antibodies; their autoantibody-positive, as...
متن کاملGenome-Wide Profiling of miRNA and mRNA Expression in Alzheimer’s Disease
BACKGROUND Our study aimed to identify key differentially expressed genes (DEGs) and miRNAs (DEmiRNAs) which can serve as potential biomarkers for diagnosis and therapy of Alzheimer's disease (AD). MATERIAL AND METHODS We performed miRNA and mRNA integrated analysis (MMIA) to identify DEGs and DEmiRNAs of AD. The AD-specific DEmiRNAs-targets interaction network was contrasted. Gene ontology (GO...
متن کامل